Mirroring strong and weak NPIs and PPIs

Hedde Zeijlstra

Strong Negative Polarity Items (NPIs) are NPIs that are only fine in anti-additive contexts, whereas weak NPIs are generally licensed in all downward-entailing contexts. Similarly, strong Positive Polarity Items (PPIs) are anti-licensed in all downward-entailing contexts; weak PPIs are only bad in anti-additive contexts.

According to Chierchia (2006, 2013), NPIs that denote lower scalar endpoints, such as existentials like any or ever, are fine in downward entailing contexts, since outside such contexts their semantics would give rise to a contradiction. This contradiction arises as such NPIs both obligatorily introduce domain alternatives and trigger the presence of a covert exhaustifier. As argued for in earlier work, elements with the same properties that denote the highest endpoint of a scale, such as universal quantifiers, must be PPIs.

For Chierchia (2013), following Gajewski (2011), the weak-strong NPI distinction results from whether the exhaustifier only looks at the semantics of the NPI licenser, or also at its pragmatics (both the presupposition and the implicatures). Weak NPIs trigger the covertly present exhaustifier (EXH) to look at the semantic contribution of the licenser only; strong NPIs also trigger EXH to look the licenser’s pragmatic contribution. Since the joint semantic-pragmatic contribution of all non-anti-additive licensors is no longer downward entailing (e.g., enriched ‘few N’ means ‘few but at least one N’), only anti-additive licensors can license strong NPIs.

This analysis ignores a recent observation made by Collins & Postal (2014), who observe that strong NPIs are generally strict NPIs (i.e. NPIs that must be licensed within a local syntactic domain, such as a finite clause or a syntactic island) and vice versa. Licensing such strong/strict NPIs across such locality boundaries, like adjunct islands, is not possible. Weak NPI licensing, by contrast, is not subject to such syntactic locality constraints and may apply across locality boundaries. This is a problem for the Chierchia-Gajewski approach, which presupposes feature checking to underlie both strong and weak NPI licensing.
I show in this talk that the distinction between strong/strict NPIs and weak/non-strict is best captured by modifying Chierchia’s (2013) approach to NPI- hood. I argue that there are two ways for establishing a relation between an NPI and a (covert) exhaustifier: one established in the syntax and one where NPIs are exhausted in purely pragmatic way: if an element introduces sub-domain alternatives, at some pragmatic level, these domain alternatives must be exhausted. This means that there are two different types of exhaustifiers, a syntactic and a pragmatic type. The next step is two assign these two types of exhaustifiers different semantic/pragmatic properties. The syntactic exhaustifier takes the enriched meaning contribution of an NPI licenser into consideration; the pragmatic exhaustifier only applies to the assertion. Then, NPIs exhausted by the latter type are weak NPIs, the ones exhausted by the former type are strong NPIs.

In the final part of the talk, I apply this analysis to PPI- hood and I show that a number of previously ununderstood properties of PPI-anti-licensing now follow naturally, including the fact that strong PPIs can never take scope below negation, but weak PPIs can, provided they appear below negation at surface structure.