There is no question on the role played by bridges in the development of civilization, and no question either on their power of evocation on people, as symbols of scientific and technically advanced, of richness of power. Bridge structures have always occupied a special place in the affection of structural engineers, probably because their structural conception is more strictly related to aesthetics and functionality than in any other construction types. For the same reason bridges give the impression of being other simple structural systems, whose seismic response could be easily predicted (something that recent earthquakes have shown not to be necessarily the case).

Progress in design and assessment procedures have been recently achieved all over the world and practices have changed and improved. Striking bridges have been built in high seismicity areas, such as the splendid Rio-Antirion bridge, recently awarded for its excellence in design and construction. Large earthquakes have been severely challenged by intense seismic action, such as the Bolu Viaduct, gone through a complex and innovative repair and retrofit process after the 1999 Duzce Earthquake.

In this context, it was felt appropriate to gather together a team of experts from two countries highly exposed to seismic hazard, rich of bridges and scientifically and technically advanced, to discuss recent developments in specific areas of bridge design, assessment and strengthening.