Salta al contenuto principale
Progetto "Dipartimenti di Eccellenza"
Testo

I Dipartimenti di Eccellenza rappresentano un intervento realizzato dal Ministero dell’Istruzione dell'Università e della Ricerca che consiste in risorse premiali aggiuntive destinate a 180 Dipartimenti delle università statali capaci di distinguersi per qualità della ricerca prodotta e del progetto di sviluppo. Il contributo finanziario, a cadenza quinquennale, è destinato al sostegno e alla valorizzazione della ricerca, da realizzarsi attraverso investimenti in capitale umano, infrastrutture e attività didattiche e scientifiche di alta qualificazione.

 

Titolo
Obiettivi
Testo

PROGETTI DI RICERCA

  • Sviluppo di un approccio olistico per la valutazione di rischio e resilienza di infrastrutture critiche, soggette a diversi tipi di catastrofi naturali, inclusi aspetti assicurativi e di risk financing;
  • Sviluppo di metodi e tecnologie orientate alla riduzione delle perdite attese nelle costruzioni per effetto di eventi sismici ed altri eventi catastrofici, con particolare riferimento ai danni connessi agli elementi non strutturali, agli impianti, ai contenuti ed alle perdite indirette;
  • Completa revisione dell'approccio di valutazione delle azioni indotte da moti sismici all'ambiente costruito e di appropriate tecniche di progetto, volte ad ottimizzare l'utilizzo delle risorse disponibili.

INFRASTRUTTURE

  • Realizzazione di una nuova attrezzatura sperimentale, unica a livello mondiale, in grado di effettuare prove a grande scala su elementi strutturali e non strutturali, simulando la risposta relativa di qualsiasi coppia contigua di piani di edifici di qualsiasi altezza;
  • Costituzione di un Museo Internazionale dell'Ingegneria Sismica, unico nel panorama internazionale, a carattere multi-mediale.

ATTIVITA’ DIDATTICHE

  • Affermazione internazionale del dottorato in Comprensione e Gestione delle Situazioni Estreme;
  • Il lancio a livello nazionale ed internazionale della Laurea Magistrale Interateneo in Civil Engineering for Mitigation of Risk from Natural Hazards.
Titolo
Research
Testo

The growth and strengthening of the national and international recognition of the research area are based on three important lines of research, centred around:

  1. The development of a holistic approach for the evaluation of risk and resilience of critical infrastructures, subjected to different types of natural hazard. It aims to define common estimator parameters and the development of a model capable of quantifying risk through a convolution of hazard, vulnerability and exposure;
  2. The development of methods and technologies which aim to reduce expected losses in buildings due to seismic and other catastrophic events, with particular reference to damage to non-structural elements.  The purpose is to change the way of designing non-structural elements, which must be coherent with the design of the structural elements;
  3. Review of the approach to evaluate actions induced on the built environment by ground shaking and of suitable design methodologies, aimed at optimising the use of the available resources. This starts from the knowledge of an enormous database of high-quality ground motion recording that can be used to redefine older and dated attenuation models developed for design over half a century ago.
Titolo
Infrastruttura
Testo
  1. Il progetto prevede l'acquisto, la gestione e la messa in funzione di una potente macchina di prova, orientata in modo specifico alla linea di ricerca 2 ed alla simulazione di azioni sismiche, ma con importanti applicazioni anche per gli altri due filoni di ricerca. L'attrezzatura consentirà di simulare sperimentalmente la risposta di due qualsiasi piani contigui a qualsiasi altezza di un edificio, verificando gli effetti della risposta su elementi non strutturali, quali ad esempio pareti interne, serramenti, controsoffitti, ascensori, componenti impiantistici, arredi di ogni tipo. Essa consisterà in due pareti di riscontro in calcestruzzo post-compresso, con dimensioni circa 6 x 4 x 1,2 m, cui saranno applicati quattro attuatori dinamici ad alte prestazioni, che governeranno gli spostamenti orizzontali nelle due direzioni di riferimento e la rotazione attorno ad un asse verticale di una piastra in acciaio, vincolata altresì da quattro bielle verticali, incernierate alle estremità, ad una seconda tavola a sei gradi di libertà, già disponibile presso il laboratorio di Eucentre. L'attrezzatura sarà collocata in un laboratorio dedicato al progetto messo a disposizione da Eucentre. La progettazione esecutiva e l'esecuzione di indagini tecniche e di mercato per la realizzazione dell'attrezzatura di prova sono già state effettuate nel corso del primo anno di attività. Entro i primi mesi del 2019 è prevista la pubblicazione del bando di gara.
  2. La costituzione del Museo Internazionale dell'Ingegneria Sismica punta ad accrescere il riconoscimento del posizionamento dell'area, a livello nazionale ed internazionale, attraverso un forte impatto mediatico e sociale. Infatti, il progetto di un museo orientato all'ingegneria sismica ed alla mitigazione del rischio sismico si prefigge di contribuire a ridurre la confusione esistente anche a livello mediatico tra sismologia ed ingegneria sismica e tra pericolosità e rischio. Il museo, che potrà ospitare collezioni permanenti e temporanee, avrà certamente un forte carattere multimediale ed interattivo, con sezioni orientate alla simulazione, dove sarà possibile sperimentare per mezzo di tavole vibranti gli effetti dei moti sismici su oggetti e persone.
Titolo
Attività Didattiche
Testo

Sotto il profilo della didattica di secondo e terzo livello, il progetto Dipartimenti di Eccellenza si prefigge:

  • il consolidamento del Dottorato in Comprensione e gestione delle situazioni estreme, attivo già da quindici anni, attraverso il finanziamento di tre borse di dottorato per i successivi tre cicli sulle tematiche dei filoni di ricerca del progetto, e il contestuale rafforzamento del suo riconoscimento internazionale, tramite l'attivazione di un dottorato "Marie Curie", e la creazione di un programma congiunto con una o più università del Nord America, con alcune delle quali la Scuola IUSS ha già in essere accordi bilaterali per scambi di studenti;
  • la promozione della nuova Laurea Magistrale Interateneo in Civil Engineering for Mitigation of Risk from Natural Hazards, da realizzare tramite il finanziamento di borse di borse studio ed aumentare la capacità attrattiva soprattutto tra gli studenti stranieri.
Testo

Line 1

  1. Papaioannou, N., Distel, E., Oliveira, E., Gabriel, C., Frydas I., Anesti, O., Attignon, E., Aggerbeck, M., Horvat, M., Barouki, R., Sariiannis, D., Karakitsios, S. Multi-omics analysis reveals that co-exposure to phthalates and metals disturbs urea cycle and choline metabolism. Environmental Research (2021) 192, 110041.
  2. Novak, R., Kocman, D., Robinson, J.A., Kanduč, T., Sarigiannis, D., Džeroski, S., Horvat, M. Low-cost environmental and motion sensor data for complex activity recognition: proof of concept. Engineering Proceedings (2020) 2,54; doi:10.3390/ecsa-7-08194.
  3. Goumenou, M., Sarigiannis, D., Tsatsakis, A., Anesti, O., Docea, A. O., Petrakis, D., Tsoukalas, D., Kostoff, R., Rakitskii, V., Spandidos, D. A., Aschner, M., Calina, D., 2020. COVID‑19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22, 20-32.
  4. Skalny, A. V., Lima, T. R. R., Ke, T., Zhou, J.-C., Bornhorst, J., Alekseenko, S. I., Aaseth, J., Anesti, O., Sarigiannis, D. A., Tsatsakis, A., Aschner, M., Tinkov, A. A., 2020. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food and Chemical Toxicology. 146, 111809.
  5. Trivizakis, E., Tsiknakis, N., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Sarigiannis, D., Tsatsakis, A., Papanikolaou, N., Karantanas, A. H., Marias, K., 2020. Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis. Exp Ther Med. 20, 78.
  6. Frydas, I. S., Kermenidou, M., Tsave, O., Salifoglou, A., Sarigiannis, D. A., 2020. Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air. Toxicology Reports. 7, 1469-1479.
  7. Papaioannou, N., Distel, E., Oliveira, E., Gabriel, C., Frydas I., Anesti, O., Attignon, E.,  Aggerbeck, M., Horvat, M., Barouki, R., Sarigiannis, D., Karakitsios, S. Multi-omics analysis reveals that co-exposure to phthalates and 1 metals disturbs urea cycle and choline metabolism. Environmental Research (2020), in press.
  8. Sarigiannis, D., Papaioannou, N., Handakas, E., Anesti, O., Polanska, K., Hanke, W.., Salifoglou, A, Gabriel, C., Karakitsios, S. Neurodevelopmental exposome: the effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. Environmental Research (2020), in press.
  9. Kermenidou, M., Karakitsios, S., Sarigiannis, D. Sources of oxidative stress induced by ambient air PMx. Environmental Research (2020), in press.
  10. Sarigiannis, D., Chapizanis, D., Petridis, I., Kougioumtzoglou, A., Kermenidou, M., Sarigiannis, G., Gotti, A., Karakitsios, S. Refining PM exposure using low-cost portable 2 sensor data and human respiratory tract 3 deposition modelling. Journal of Exposure Science and Environmental Epidemiology (2020), in press.
  11. Anesti O., Papaioannou N., Gabrie C., Dzhedzheia V., Petridis I., Dickinson M., Horvat M.,  Snoj Tratnik J.,  Tsatsakis A., Karakitsios S., Sarigiannis A. An exposome connectivity paradigm for the mechanistic assessment of the effects of prenatal and early life exposure to metals on neurodevelopment. Frontiers in Public HEALTH (2020), in press.
  12. Chapizanis, D., Karakitsios, S., Gotti, A., Sarigiannis, D. Assessing personal exposure using Agent Based Modelling informed by sensors technology. Environmental Research (2020), in press.
  13. Sarigiannis, D., Handakas, E.J., Karakitsios, S, Gotti, A. Life cycle assessment of municipal waste management options. Environmental Research (2020), in press.
  14. Papadaki, K., Karakitsios, S., Sarigiannis, D. Modeling of the total elimination half life for environmental chemicals. Environmental Research (2020), in press.
  15. Chaika, V., Pikula, K., Vshivkova, T., Zakharenko, A., Reva, G., Drozdov, K., Vardavas, A. I., Stivaktakis, P. D., Nikolouzakis, T. K., Stratidakis, A. K., Kokkinakis, M. N., Kalogeraki, A., Burykina, T., Sarigiannis, D. A., Kholodov, A., Golokhvast, K. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicology Reports (2020) 7, 947-954.
  16. Saraga, D., Maggos, T., Degrendele, C., Klánová, J., Horvat, M., Kocman, D., Kanduč, T., Garcia, S., Peteira, R. F., Gómez, P. M., Manousakas, M., Bairachtari, K., Eleftheriadis, K., Kermenidou, M., Karakitsios, S., Gotti, A., Sarigiannis, D. Multi-city comparative PM2.5 source apportionment for fifteen sites in Europe: The ICARUS project. Science of The Total Environment (2020) 141855.
  17. Karakitsios, S., Busker, R., Tjärnhage, T., Armand, P., Dybwad, M., Nielsen, M.F., Burman, J., Burke, J., Brinek, J., Bartzis, J., Maggos, T., Theocharidou, M., Gattinesi, P., Giannopoulos, G., Sarigiannis, D. Challenges on detection, identification and monitoring of indoor airborne chemical-biological agents. Safety Science (2020) 129, doi.org/10.1016/j.ssci.2020.104789
  18. Goumenou, M., Sarigiannis, D., Tsatsakis, A., Anesti, O., Docea, A.O., Petrakis, D., Tsoukalas, D., Kostoff, R., Rakitskii, V., Spandidos, D.A., Aschner, M., Calina, D. Covid‑19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Molecular Medicine Reports (2020) 22 (1):20-32
  19. Sarigiannis, D.Α., Karakitsios, S.P., Handakas, E., Gotti, A. Development of a generic lifelong physiologically based biokinetic model for exposome studies. Environmental Research (2020) 185, doi.org/10.1016/j.envres.2020.109307
  20. Izquierdo, R., García Dos Santos, S., Borge, R., Paz, D.D.L., Sarigiannis, D., Gotti, A., Boldo, E. Health impact assessment by the implementation of Madrid City air-quality plan in 2020. Environmental Research (2020) 183, doi.org/10.1016/j.envres.2019.109021
  21. Novak, R., Kocman, D., Robinson, J.A., Kanduč, T., Sarigiannis, D., Horvat, M. Comparing airborne particulate matter intake dose assessment models using low-cost portable sensor data. Sensors (Switzerland) (2020) 20 (5), doi.org/10.3390/s20051406
  22. Kholodov, A., Zakharenko, A., Drozd, V., Chernyshev, V., Kirichenko, K., Seryodkin, I., Karabtsov, A., Olesik, S., Khvost, E., Vakhnyuk, I., Chaika, V., Stratidakis, A., Vinceti, M., Sarigiannis, D., Hayes, A.W., Tsatsakis, A., Golokhvast, K. Identification of cement in atmospheric particulate matter using the hybrid method of laser diffraction analysis and Raman spectroscopy. Heliyon (2020) 6 (2), doi.org/10.1016/j.heliyon.2020.e03299
  23. Pourchet, M., Debrauwer, L., Klanova, J., Price, E.J., Covaci, A., Caballero-Casero, N., Oberacher, H., Lamoree, M., Damont, A., Fenaille, F., Vlaanderen, J., Meijer, J., Krauss, M., Sarigiannis, D., Barouki, R., Le Bizec, B., Antignac, J.-P. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonization issues. Environment International (2020) (in print).
  24. Arosio, M.; Martina, M.L. V.; Figueiredo, R. The whole is greater than the sum of its parts: a holistic graph-based assessment approach for natural hazard risk of complex systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 521–547, doi:10.5194/nhess-20-521-2020.
  25. Arosio, M.; Martina, M.L. V.; Creaco, E.; Figueiredo, R. Indirect Impact Assessment of Pluvial Flooding in Urban Areas Using a Graph-Based Approach: The Mexico City Case Study. Water 2020, 12, 1753, doi:10.3390/w12061753.
  26. Galuppini, G.; Quintilliani, C.; Arosio, M.; Barbero, G.; Manenti, S.; Petaccia, G.; Todeschini, S.; Ciaponi, C.; Martina, M.; Creaco, E. A unified framework for the assessment of urban flash flood hazard in the city of Monza. 2019, 1–24
  27. Monteleone, B., Bonaccorso, B., and Martina, M.L.V.: A Joint Probabilistic Index for Objective Drought               Identification: The Case Study of Haiti, Nat. Hazards Earth Syst. Sci.  20: 471-87,                  https://doi.org/10.5194/nhess-20-471-2020, 2020

 

Line 2

  1. D. Perrone, E. Brunesi, A. Filiatrault, R. Nascimbene (2020) “Probabilistic estimation of floor response spectra in masonry infilled reinforced concrete building portfolio”. Engineering Structures, 202(1), 109842, https://doi.org/10.1016/j.engstruct.2019.109842 
  2. D. Perrone, A. Filiatrault, S. Peloso, E. Brunesi, C. Beiter, R. Piccinin (2020) “Experimental seismic performance evaluation of suspended piping restraint installations”. Bulletin of Earthquake Engineering, 18(4), 1499-1524, DOI 10.1007/s10518-019-00755-5
  3. R. Merino, D. Perrone, A. Filiatrault (2020) “Consistent floor response spectra for performance-based seismic design of non-structural elements”. Earthquake Engineering and Structural Dynamics, https://doi.org/10.1002/eqe.3236
  4. D. Perrone, G.J. O’Reilly, R. Monteiro, A. Filiatrault (2020) “Assessing seismic risk in typical Italian school buildings: from in-situ survey to loss estimation”. International Journal Disaster Risk Reduction, 44, 101448, doi.org/10.1016/j.ijdrr.2019.101448
  5. D. Perrone, E. Brunesi, A. Filiatrault, S. Peloso, R. Nascimbene, C. Beiter, R. Piccinin (2020) “Seismic numerical modelling of suspended piping trapeze restraint installations based on component testing”. Bulletin of Earthquake Engineering, 18 (7), DOI: 10.1007/s10518-020-00832-0.
  6. Chalarca, A. Filiatrault, D. Perrone (2020) “Seismic demand on acceleration-sensitive nonstructural components in viscously damped braced frames. Journal of Structural Engineering, 146(9), 04020190-1-14, DOI: 10.1061/(ASCE)ST.1943-541X.0002770.  
  7. W. Carofilis, D. Perrone, G.J. O’Reilly, R. Monteriro, A. Filiatrault (2020) “Seismic retrofit of existing school buildings in Italy: Performance evaluation and loss estimation”. Engineering Structures, 225: 111243.
  8. G. Mucedero, D. Perrone, D. Perrone, E. Brunesi, R. Monteiro (2020) “Numerical modelling and validation of masonry infilled RC frames using experimental testing results”. Buildings, 10(10), 182.
  9. G. Gabbianelli, D. Perrone, E. Brunesi, R. Monteiro (2020) “Seismic Acceleration and Displacement Demand Profiles of Non-Structural Elements in Hospital Buildings”. Buildings, 10(12), 243, https://doi.org/10.3390/buildings10120243
  10. D. Rodriguez, D. Perrone, A. Filiatrault (2020) “A framework for quantifying seismic performance factors for non-structural elements”. Proceedings 17th World Conference on Earthquake Engineering, 13-18 September Sendai, Japan, Paper N° 2k-0003, 12 p.
  11. D. Perrone, A. Filiatrault, E. Brunesi, R. Nascimbene, C. Beiter, R. Piccinin (2020) “Seismic performance of suspended piping restraint installations”. Proceedings 17th World Conference on Earthquake Engineering, 13-18 September Sendai, Japan, Paper N° 2h-0004, 12 p.
  12. W. Carofilis, D. Perrone, G.J. O’Reilly, R. Monteiro, A. Filiatrault (2020) “Seismic assessment of school building in Italy: retrofit and risk classification”. Proceedings 17th World Conference on Earthquake Engineering, 13-18 September Sendai, Japan, Paper N° 3g-0006, 12 p
  13. R.J. Merino, D. Perrone, A. Filiatrault (2020) “Equivalent viscous damping for nonstructural building elements”. Proceedings 17th World Conference on Earthquake Engineering, 13-18 September Sendai, Japan, Paper N° 2k-0004, 12 p.
  14. Filiatrault, R.J. Merino, D. Perrone, G.M. Calvi (2020) “Displacement-based seismic design of non-structural building elements”. Proceedings 17th World Conference on Earthquake Engineering, 13-18 September Sendai, Japan Paper N° 2k-0033, 12 p.
  15. Chalarca, A. Filiatrault, D. Perrone (2020) “Earthquake economic losses in moment-resisting steel frames equipped with fluid viscous dampers”. Proceedings 17th World Conference on Earthquake Engineering, 13-18 September Sendai, Japan, Paper N° 2g-0003, 12 p.

 

Line 3

  1. Nafeh AMB, O’Reilly GJ, Monteiro R. Simplified seismic assessment of infilled RC frame structures. Bulletin of Earthquake Engineering 2020; 18(4): 1579–1611. DOI: 10.1007/s10518-019-00758-2.
  2. O’Reilly GJ, Calvi GM. Quantifying seismic risk in structures via simplified demand–intensity models. Bulletin of Earthquake Engineering 2020; 18(5): 2003–2022. DOI: 10.1007/s10518-019-00776-0.
  3. Perrone D, O’Reilly GJ, Monteiro R, Filiatrault A. Assessing seismic risk in typical Italian school buildings: From in-situ survey to loss estimation. International Journal of Disaster Risk Reduction 2020; 44: 101448. DOI: 10.1016/j.ijdrr.2019.101448.
  4. Cyclic model with damage assessment of longitudinal joints in segmental tunnel linings. Tunnelling and Underground Space Technology 103 (2020) 103472. https://doi.org/10.1016/j.tust.2020.103472
  5. O’Reilly GJ, Monteiro R, Nafeh AMB, Sullivan TJ, Calvi GM. Displacement-Based Framework for Simplified Seismic Loss Assessment. Journal of Earthquake Engineering 2020; 24(sup1): 1–22. DOI: 10.1080/13632469.2020.1730272.
  6. Design of laterally loaded pile-columns considering SSI effects: Strengths and weaknesses of 3D, 2D, and 1D nonlinear analysis. Earthquake engineering and structural dynamics. doi.org/10.1002/eqe.3379
  7. W. Carofilis, D. Perrone, G.J. O’Reilly, R. Monteriro, A. Filiatrault (2020) “Seismic retrofit of existing school buildings in Italy: Performance evaluation and loss estimation”. Engineering Structures, 225: 111243.
  8. Perdomo, C., Abarca, A., Monteiro, R. (2020) Estimation of Seismic Expected Annual Losses for Multi-Span Continuous RC Bridge Portfolios using a Component Level Approach, Journal of Earthquake Engineering. In-Press.
  9. Perdomo, C., Monteiro, R., Sucuoğlu, H. (2020) Development of Fragility Curves for Single-Column RC Italian Bridges using Nonlinear Static Analysis, Journal of Earthquake Engineering. In-Press.
  10. Shahnazaryan D, O’Reilly GJ. Integrating expected loss and collapse risk in performance-based seismic design of structures. Bulletin of Earthquake Engineering 2021; 19(2): 987–1025. DOI: 10.1007/s10518-020-01003-x.
  11. Silva, A., Castro, J.M., Monteiro, R. (2020) A Rational Approach to the Conversion of FEMA P-58 Seismic Repair Costs to Europe, Earthquake Spectra, 36(3), 1607-1618.
  12. Perdomo, C., Monteiro, R. (2020) Simplified Damage Models for Circular Section Reinforced Concrete Bridge Columns, Engineering Structures, 217, 110794.
  13. Mucedero, G., Perrone, D., Brunesi, E., Monteiro, R. (2020) Numerical Modelling and Validation of the Response of Masonry Infilled RC Frames Using Experimental Testing Results, Buildings, 10, 182.
  14. Perdomo, C., Monteiro, R. (2020) Extension of Displacement-Based Simplified Procedures to Seismic Loss Assessment of Multi-Span RC Bridges, Earthquake Engineering and Structural Dynamics. In Press.
  15. Gabbianelli, G., Perrone, D., Brunesi, E., Monteiro, R. (2020) Seismic Acceleration and Displacement Demand Profiles of Non-Structural Elements in Hospital Buildings, Buildings, 10, 243.
  16. Assessment of Multi-criteria evaluation procedures for identification of optimal retrofitting strategies for RC school buildings. Journal of Earthquake Engineering. In Press.
  17. Mucedero G., Perrone D., Monteiro R. Nonlinear static characterisation of masonry-infilled RC building portfolios accounting for variability of infill properties. Bulletin of Earthquake Engineering. In press.
  18. V. Ozsarac, S. Karimzadeh, A. Askan, and M. A. Erberik. Seismic demands of bare and base-isolated steel frames for real against simulated records of a past earthquake. Structure and Infrastructure Engineering. In press.
  19. Huang C., Tarbali K., Galasso C., A region-specific ground motion model for inelastic spectral displacement considering spatial correlation properties, Seismological Research Letters, https://doi.org/10.1785/0220200249 (in press).
  20. Aljawhari K., Gentile R., Freddi F., Galasso C., Effects of Ground-motion Sequences on the Vulnerability of Case-Study Reinforced Concrete Frames, Bulletin of Earthquake Engineering, https://doi.org/10.1007/s10518-020-01006-8 (in press). [Open Access]
  21. Gentile R., Galasso C., Hysteretic energy-based state-dependent fragility for ground motion sequences, Earthquake Engineering & Structural Dynamics, https://doi.org/10.1002/eqe.3387 (in press). [Open Access]
  22. Gentile R., Galasso C., Pampanin S., Material uncertainty vs joint structural detailing: relative effect on the seismic fragility of reinforced concrete frames, ASCE Journal of Structural Engineering, 147(4): 04021007, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002917 (April 2021).
Testo

Line 1

  1. Arosio Marcello, Martina Mario, Rui Figueiredo, “The whole is greater than the sum of its parts: a holistic graph-based assessment approach for natural hazard risk of complex systems”, accepted for publication in NHESS, 2019
  2. Monteleone Beatrice, Mario Martina, Brunella Bonaccorso, “A joint probabilistic index for objective drought identification: the case study of Haiti”, accepted for publication in NHESS, 2019
  3. Monteleone, Beatrice, and Mario Martina. "Remote-sensing based model for drought identification." EGU General Assembly Conference Abstracts. Vol. 20. 2018.
  4. Arosio, M., and M. Martina. "Improving disaster risk assessment by means of graph theory." XXXVI Convegno Nazionale di Idraulica e Costruzioni Idrauliche. ITA, 2018.
  5. Arosio, Marcello, and Mario Martina. "The use of Graph Theory to improve disaster risk assessment." EGU General Assembly Conference Abstracts. Vol. 20. 2018.
  6. Arosio, M., et al. "Simplified pluvial flood risk assessment in a complex urban environment by means of a dynamic coupled hydrological-hydraulic model: case study of Mexico City." 5th IAHR Europe Congress—New Challenges in Hydraulic Research and Engineering. Aronne Armanini, Elena Nucci, 2018.
  7. Figueiredo, R., Martina, M. L., Stephenson, D. B., & Youngman, B. D. (2018). A Probabilistic Paradigm for the Parametric Insurance of Natural Hazards. Risk Analysis, 38(11), 2400-2414.
  8. Dell’Acqua, Fabio, et al. "A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data." Sensors 18.2 (2018): 591.
  9. Vecere, Annibale, et al. "Toward near real-time flood loss estimation: model structure and data requirements." EGU General Assembly Conference Abstracts. Vol. 20. 2018.
  10. Figueiredo, R., Schröter, K., Weiss-Motz, A., Martina, M. L., & Kreibich, H. (2018). Multi-model ensembles for assessment of flood losses and associated uncertainty. Natural Hazards and Earth System Sciences, 18(5), 1297-1314.
  11. Dottori, Francesco, Mario Lloyd Virgilio Martina, and Rui Figueiredo. "A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios." Journal of Flood Risk Management 11 (2018): S632-S645.
  12. Onida, M., Faravelli, M., Gotti, A., Sarigiannis, D. Communicating multi-hazard health risk through a web-GIS platform: a case-study. Fresenius Environmental Bulletin (2019), 762.

 

Line 2

  1. D. Perrone, A. Filiatrault, S. Peloso, E. Brunesi, C. Beiter, R. Piccinin (2019) “Experimental seismic performance evaluation of suspended piping restraint installations”. Bulletin of Earthquake Engineering, DOI 10.1007/s10518-019-00755-5.
  2. D. Perrone, E. Brunesi, A. Filiatrault, R. Nascimbene (2019) “Probabilistic Estimation of Floor Response Spectra in Masonry Infilled Reinforced Concrete Building Portfolio”. Engineering Structures, https://doi.org/10.1016/j.engstruct.2019.109842 
  3. D. Perrone, G.J. O’Reilly, R. Monteiro, A. Filiatrault (2019) “Assessing seismic risk in typical Italian school buildings: from in-situ survey to loss estimation”. International Journal Disaster Risk Reduction, 44, 101448, doi.org/10.1016/j.ijdrr.2019.101448 
  4. R. Merino, D. Perrone, A. Filiatrault (2019) “Consistent floor response spectra for performance-based seismic design of non-structural elements”. Earthquake Engineering and Structural Dynamics, https://doi.org/10.1002/eqe.3236
  5. B. Chalarca, A. Filiatrault, D. Perrone (2019) D. Perrone, A. Filiatrault (2019) “Floor Acceleration Demand on Steel Moment Resisting Frame Buildings Retrofitted with Linear and Nonlinear Viscous Dampers”. Proceeding Fourth International Workshop on the Seismic Performance of Non-Structural Elements, 22-23 May 2019, Pavia, Italy, pp. 573-589, ISBN 978-88-85701-12-0, DOI 10.7414/4sponse.ID.16
  6. D. Perrone, A. Filiatrault (2019) “Improving the seismic performance of non-structural elements using Building Information Modelling”. Proceeding Fourth International Workshop on the Seismic Performance of Non-Structural Elements, 22-23 May 2019, Pavia, Italy, pp. 501-512, ISBN 978-88-85701-12-0, DOI 10.7414/4sponse.ID.5
  7. R.J. Merino Vela, D. Perrone, A. Filiatrault (2019) “Estimating consistent relative displacement and absolute acceleration floor response spectra in elastic buildings”. Proceeding Fourth International Workshop on the Seismic Performance of Non-Structural Elements, 22-23 May 2019, Pavia, Italy, pp. 513-526, ISBN 978-88-85701-12-0, DOI 10.7414/4sponse.ID.4
  8. D. Perrone, E. Brunesi, F. Dacarro, S. Peloso, A. Filiatrault (2019) “Seismic assessment and qualification of non-structural elements in Europe: a critical review”. Proceeding Fourth International Workshop on the Seismic Performance of Non-Structural Elements, 22-23 May 2019, Pavia, Italy, pp. 549-5559, ISBN 978-88-85701-12-0, DOI 10.7414/4sponse.ID.10
  9. B. Chalarca, A. Filiatrault, D. Perrone (2019) “Seismic performance of steel moment-resisting frame retrofitted with linear and nonlinear viscous dampers”. Proceedings 16th World conference on seismic isolation, energy dissipation and active control of structures, Saint Petersburg – Russia, 1-6 July 2019.
  10. R.J. Merino Vela, D. Perrone, A. Filiatrault (2019) “Force-based VS displacement-based seismic design of non-structural elements”. Proceedings XVIII ANIDIS 2019 L’ingegneria sismica in Italia, Ascoli Piceno – Italia, 15-19 September 2019
  11. D. Perrone, E. Brunesi, S. Peloso (2019) “Shake table testing for seismic performance evaluation of non-structural elements”. Proceeding 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, 24-26 June 2019.

 

Line 3

  1. Calvi, G. M., O’Reilly, G. J., and Andreotti, G. [2019] “Re-visiting Earthquake Resistant Design,” 12th Canadian Conference on Earthquake Engineering, Quebec, Canada.
  2. Calvi, G. M., and Andreotti, G. [2019] “Effects of Local Soil, Magnitude and Distance on Empirical Response Spectra for Design,” Journal of Earthquake Engineering, DOI: 10.1080/13632469.2019.1703847.
  3. O’Reilly, G. J., and Calvi, G. M. [2019] “Conceptual seismic design in performance-based earthquake engineering,” Earthquake Engineering & Structural Dynamics, Vol. 48, No.4, pp. 389–411 DOI: 10.1002/eqe.3141.
  4. Shahnazaryan, D., O’Reilly, G. J., and Monteiro, R. [2019] “Using direct economic losses and collapse risk for seismic design of RC buildings,” COMPDYN 2019 - 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece.
  5. O’Reilly, G. J., and Calvi, G. M. [2020] “Quantifying seismic risk in structures via simplified demand–intensity models,” Bulletin of Earthquake Engineering DOI: 10.1007/s10518-019-00776-0.
  6. Nafeh, A. M. B., O’Reilly, G. J., and Monteiro, R. [2019] “Simplified seismic assessment of infilled RC frame structures,” Bulletin of Earthquake Engineering DOI: 10.1007/s10518-019-00758-2.
  7. O’Reilly, G. J., Monteiro, R., Nafeh, A. M. B., Sullivan, T. J., and Calvi, G. M. [2019] “Displacement-Based Framework for Simplified Seismic Loss Assessment,” Journal of Earthquake Engineering (Accepted with Minor Revisions)
  8. Perrone, D., O’Reilly, G. J., Monteiro, R., and Filiatrault, A. [2019] “Assessing seismic risk in typical Italian school buildings: From in-situ survey to loss estimation,” International Journal of Disaster Risk Reduction, p. 101448 DOI: 10.1016/j.ijdrr.2019.101448.
  9. O’Reilly, G. J., and Monteiro, R. [2019] “Probabilistic models for structures with bilinear demand-intensity relationships,” Earthquake Engineering & Structural Dynamics, Vol. 48, No.2, pp. 253–268 DOI: 10.1002/eqe.3135.
  10. Monteiro, R., Perdomo, C., Sucuoglu, H. (2019) Evaluation of different approaches for computation of expected annual seismic losses of RC bridge portfolios. Proceedings of the 5th International Conference on Earthquake Engineering and Seismology (5ICEES), Ankara, Turkey, October 8-11, 2019.
  11. Perdomo, C., Monteiro, R., Sucuoglu, H. (2019) Seismic Risk Assessment of Multi-Span Bridges Using Nonlinear Static Procedures. COMPDYN - Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece, June 24-26, 2019.
Testo

Line 1

  1. Kohrangi, M., Danciu, L., and P Bazzurro (2018). “Comparison between outcomes of the 2014 Earthquake Hazard Model of the Middle East (EMME14) and National Seismic Design Codes: The case of Iran”, Journal of Soil Dynamics and Earthquake Engineering, Vol. 114, pp. 348-361, November.

Line 2

  1. Filiatrault, A., Perrone, D., Merino, R., Calvi, G.M. 2018. “Performance-Based Seismic Design of Non-Structural Building Elements”, Journal of Earthquake Engineering, https://doi.org/10.1080/13632469.2018.1512910

Line 3

  1. Calvi GM. Revisiting design earthquake spectra. Earthquake Engineering & Structural Dynamics 2018; 47(13): 2627–2643. DOI: 10.1002/eqe.3101.
  2. Calvi GM, Rodrigues D, Silva V. Introducing new design spectra derived from Italian recorded ground motions 1972 to 2017. Earthquake Engineering & Structural Dynamics 2018; 47(13): 2644–2660. DOI: 10.1002/eqe.3102.
  3. O’Reilly GJ, Monteiro R. Probabilistic models for structures with bilinear demand-intensity relationships. Earthquake Engineering & Structural Dynamics 2019; 48(2): 253–268. DOI: 10.1002/eqe.3135.
  4. O’Reilly GJ, Calvi GM. Conceptual seismic design in performance-based earthquake engineering. Earthquake Engineering & Structural Dynamics 2018. DOI: 10.1002/eqe.3141.
  5.